Во многих комбинаторных задачах непосредственное нахождение числа интересующих нас вариантов оказывается затруднительным. Однако при некотором изменении условия задачи можно найти количество вариантов, превосходящее исходное в известное число раз. Такой прием называется методом кратного подсчета.
1. Сколько анаграмм имеет слово КЛАСС?
Трудность в том, что в этом слове две одинаковые буквы С. Будем временно считать их разными и обозначим С1 и С2. Тогда число анаграмм окажется равным 5! = 120. Но те слова, которые отличаются друг из друга лишь перестановкой букв С1 и С2, на самом-то деле являются одной и той же анаграммой! Поэтому 120 анаграмм разбиваются на пары одинаковых, т.е. искомое число анаграмм равно 120/2 = 60.
2. Сколько анаграмм имеет слово ШАРАДА?
Считая три буквы А различными буквами А1, А2, А3, получим 6! анаграмм. Но слова, которые получаются друг из друга только перестановкой букв А1, А2, А3, на самом деле являются одной и той же анаграммой. Поскольку имеется 3! перестановок букв А1, А2, А3, полученные изначально 6! анаграмм разбиваются на группы по 3! одинаковых, и число различных анаграмм оказывается равным 6!/3! = 120.
Другая содержательная комбинаторная идея — так называемый переход к дополнению. В некоторых задачах вместо искомого числа «нужных» вариантов оказывается проще найти число «ненужных» вариантов, дополняющее число «нужных» вариантов до известного общего количества.
3. Сколько существует четырехзначных чисел, в записи которых есть хотя бы одна четная цифра?
Найдем количество «ненужных» четырехзначных чисел, в записи которых присутствуют только нечетные цифры. Таких чисел 54 = 625. Но всего четырехзначных чисел 9000, поэтому искомое количество «нужных» чисел равно 9000 – 625 = 8375.
- Найти число анаграмм у слов ВЕРЕСК, БАЛАГАН, ГОРОДОВОЙ.
- Найти число анаграмм у слов БАОБАБ, БАЛЛАДА, ПЕРЕПОЛОХ, АНАГРАММА, МАТЕМАТИКА, КОМБИНАТОРИКА, ОБОРОНОСПОСОБНОСТЬ.
- Сколькими способами можно поселить 7 приезжих в три гостиничных номера: одноместный, двухместный и четырехместный?
- В холодильнике лежат два яблока, три груши и четыре апельсина. Каждый день в течение девяти дней подряд Пете дают один какой-то фрукт. Сколькими способами это может быть сделано?
- Из семи лучших лыжников школы нужно отобрать команду из трех человек для участия в городских соревнованиях. Сколькими способами это можно сделать?
- Перед экзаменом профессор пообещал поставить двойки половине экзаменуемых. На экзамен пришло 20 студентов. Сколькими способами он может выполнить обещание?
- Сколько слов можно составить из пяти букв А и не более чем из трех букв Б?
- В продаже есть шоколадное, клубничное и молочное мороженое. Сколькими способами можно купить три мороженых?
- При приготовлении пиццы к сыру добавляются разные компоненты, обеспечивающие тот или иной вкус. В распоряжении Билла имеются лук, грибы, помидоры, перец и анчоусы, причем все это, по его мнению, можно добавлять к сыру. Сколько видов пиццы может приготовить Билл?
- Свидетель криминальной разборки запомнил, что преступники скрылись на «мерседесе», номер которого содержал буквы Т, З, У и цифры 3 и 7 (номером является строка, в которой сначала идут три буквы, а затем — три цифры). Сколько существует таких номеров?
- Сколько диагоналей в выпуклом n-угольнике?
- Сколько всего существует n-значных чисел?
- Сколько существует десятизначных чисел, в записи которых есть хотя бы две одинаковые цифры?
- Кубик бросают трижды. Среди всевозможных последовательностей результатов есть такие, в которых хотя бы один раз выпала шестерка. Сколько их?
- Сколько пятизначных чисел имеют в своей записи цифру 1?
- Сколькими способами можно расставить на шахматной доске белого и черного короля так, чтобы они не били друг друга?
- Сколько делителей у числа 10800?