Цитология

Основы цитологии

Клетка. Клеточная теория.

Клетка — мельчайшая структура, способная к самовоспроизведению. Термин «клетка» был введен Р. Гуком в 1665 г. (он изучал с помощью микроскопа срез стебля бузины — сердцевину и пробку; хотя сам Гук видел не клетки, а их оболочки). Совершенствова­ние микроскопической техники позволило выявить разнообразие форм клеток, сложность строения ядра, процесс деления клеток и др. Микроскоп был усовершенствован Антони ван Левенгуком (его микроскопы давали увеличение в 270-300 раз).

Другие ме­тоды исследования клетки:

  1. дифференцированное центрифугирование — основано на том, что различные клеточные структуры имеют разную плотность. При очень быстром вращении в приборе (ультрацентрифуге) органеллы тонко измельченных клеток выпадают в осадок из раствора, располагаясь слоями в соответствии со своей плотностью. Эти слои разделяют и изучают.
  2. электронная микроскопия — используется с 30-х годов 20-го века (когда был изобретен электронный микроскоп — он дает увеличение до 106 раз); с помощью этого метода изучают строение мельчайших структур клетки, в т.ч. отдельных органелл и мембран.
  3. авторадиография — метод, позволяющий анализировать локализацию в клетках веществ, меченных радиоактивными изотопами. Так выявляют места синтеза веществ, состав белков, пути внутриклеточного транспорта.
  4. фазово-контрастная микроскопия — используется для исследования прозрачных бесцветных объектов (живых клеток). При прохождении через такую среду световые волны смещаются на величину, определяемую толщиной материала и скоростью проходящего через него света. Фазово-контрастный микроско­п преобразует эти сдвиги в черно-белое изображение.
  5. рентгеноструктурный анализ — изучение клетки с помощью рентгеновских лучей.

В 1838-1839 гг. ботаником Матиасом Шлейденом и физиологом Теодором Шванном была создана клеточная теория. Ее суть заключалась в том, что основным структурным элементом всех живых организмов (растений и животных) является клетка.

Основные положения клеточной теории:
  1. клетка — элементарная живая система; основа строения, жизнедеятельности, размножения и индивидуального развития организмов.
  2. клетки различных тканей организма и клетки всех организмов сходны по строению и химическому составу.
  3. новые клетки возникают только путем деления ранее существовавших клеток.
  4. рост и развитие любого многоклеточного организма есть следствие роста и размножения одной или нескольких исходных клеток.

Молекулярный состав клетки.

Химические элементы, входящие в состав клеток и выполняющие какие-либо функции, называются биогенными. По содержанию элементы, входящие в состав клетки, делятся на три группы:

  1. макроэлементы — составляют основную массу клетки — 99%. Из них 98% приходится на 4 элемента: С, О, Н и N. Также к этой группе относятся К, Мg, Са, Р, С1, S, Na, Fe.
  2. микроэлементы — к ним относятся в основном ионы, входящие в состав ферментов, гормонов и др. веществ. Их концентрация от 0,001 до 0,000001 % (В, Си, Zn. Br, I, Mo и т.д.).
  3. ультрамикроэлементы — их концентрация не превышает 10-6%, а физиологическая роль не выявлена (Аи, Аg, U, Ra).

Химические компоненты живого делятся на неорганические (вода, минеральные соли) и органические (белки, углеводы, липиды, нуклеиновые кислоты, витамины).


Вода. За небольшим исключением (кость и эмаль зубов), вода является преобладающим компонентом клеток — в среднем 75-85%. В клетке вода находится в свободном и связанном состоянии. Молекула воды представляет собой диполь — на одном конце отрицательный заряд, на другом — положительный, но в целом молекула электронейтральна. Вода имеет высокую теплоемкость и относительно высокую для жидкостей теплопроводность.

Биологическое значение воды: универсальный растворитель (для полярных веществ, неполярные вещества в воде не растворяются); среда для реакций, участник реакций (расщепление белков), участвует в поддержании теплового равновесия клетки; источник кислорода и водорода при фотосинтезе; основное средство передвижения веществ в организме.


Ионы и соли. Соли входят в состав костей, панцирей, раковин и т.п., т.е. выполняют опорную и защитную функции, а также участвуют в минеральном обмене. Ионы входят в состав различных веществ (железо — гемоглобин, хлор — соляная кислота в желудке, магний — хлорофилл) и участвуют в регуляторных и иных процессах, а также в поддержании гомеостаза.


Белки. По содержанию в клетке занимают первое место из органических веществ. Белки — это нерегулярные полимеры, состоящие из аминокислот. В состав белков входят 20 разных аминокислот. Аминокислота:

NH2—CH—COOH
    |
    R

Соединение аминокислот происходит следующим образом: аминогруппа одной кислоты соединяется с карбоксильной группой другой, при этом выделяется молекула воды. Образовавшаяся связь называется пептидной (разновидность ковалентной), а само соединение — пептидом. Соединение из большого числа аминокислот называется полипептидом. Если белок состоит только из аминокислот, то его называют простым (протеином), если в него входят другие вещества, то сложным (протеидом).

Пространственная организация белков включает 4 структуры:

  1. Первичная (линейная) — полипептидная цепь, т.е. нить аминокислот, соединенных ковалентными связями.
  2. Вторичная — белковая нить закручивается в спираль. В ней возникают водородные связи.
  3. Третичная — спираль далее свертывается, образуя глобулу (клубок) или фибриллу (вытянутая структура). В ней возникают гидрофобные и электростатические взаимодействия, а также ковалентные дисульфидные -S-S- связи.
  4. Четвертичная — соединение нескольких макромолекул белка вместе.

Разрушение структуры белка называется денатурацией. Она бывает необратимой (если повреждается первичная структура) или обратимой (если повреждаются другие структуры).

Функции белков:

  1. ферменты — это биологически активные вещества, они катализируют химические реакции. Известно более 2000 ферментов. Свойства ферментов: специфичность действия (каждый действуют только на определенное вещество — субстрат), активность только в определенной среде (каждый фермент имеет свой оптимальный диапазон рН) и при определенной температуре (при повышении температуры увеличивается вероятность денатурации, поэтому активность фермента снижается), большая эффективность действия при малом их содержании. Любой фермент имеет активный центр — это особый участок в структуре фермента, к которому присоединяется молекула субстрата. В настоящее время на основании строения ферменты делят на две основные группы: полностью белковые ферменты и ферменты, состоящие из двух частей: апофермента (белковая часть) и кофермента (небелковая часть; это ион или молекула, связывающаяся с белковой частью, образуя при этом каталитически активный комплекс). Коферментами являются ионы металлов, витамины. Без кофермента апофермент не функционирует.
  2. регуляторные — гормоны.
  3. транспортные — гемоглобин.
  4. защитные — иммуноглобулины (антитела).
  5. движение — актин, миозин.
  6. строительная (структурная).
  7. энергетическая — крайне редко, только после того, когда закончились углеводы и липиды.

Углеводы — органические вещества, в состав которых входит С, О и Н.Общая формула: Сn2О)n, где n не менее 3-х. Они делятся на 3 класса: моносахариды, дисахариды (олигосахариды) и полисахариды.

Моносахариды (простые углеводы) — состоят из одной молекулы, это твердые кристаллические вещества, хорошо растворимые в воде, имеющие сладкий вкус. Рибоза и дезоксирибоза5) — входят в состав ДНК и РНК. Глюкоза6Н12О6) — входит в состав полисахаридов; основной первичный источник энергии в клетке. Фруктоза и галактоза — изомеры глюкозы.

Олигосахариды — состоят из 2, 3 или 4-х остатков моносахаридов. Наиболее важны дисахариды — они состоят из 2 остатков; хорошо растворимы в воде, сладкие на вкус. Сахароза12Н22О11) — состоит из остатков глюкозы и фруктозы; широко распространена в растениях. Лактоза (молочный сахар) — состоит из глюкозы и галактозы. Важнейший источник энергии для детенышей млекопитающих. Мальтоза — состоит из 2-х молекул глюкозы. Это основной структурный элемент крахмала и гликогена.

Полисахариды — высокомолекулярные вещества, состоящие из большого числа остатков моносахаридов. Плохо растворимы в воде, не имеют сладкого вкуса. Крахмал — представлен двумя формами: амилоза (состоит из остатков глюкозы, соединенных в неразветвленную цепь) и амилопектин (состоит из остатков глюкозы, линейные и разветвленные цепи). Гликоген — полисахарид животных и грибов. По структуре напоминает крахмал, но сильнее разветвлен. Клетчатка (целлюлоза)­ — главный структурный полисахарид растений, входит в состав клеточных стенок. Это линейный полимер.

Функции углеводов:

  1. энергетическая — 1 г при полном распаде дает 17,6 кДж.
  2. Структурная.
  3. Опорная (у растений).
  4. Запас питательных веществ (крахмал и гликоген).
  5. Защитная — вязкие секреты (слизи) богаты углеводами и предохраняют стенки полых органов.

Липиды — объединяют жиры и жироподобные вещества — липоиды. Жиры — это сложные эфиры жирных кислот и глицерина. Жирные кислоты: пальмитиновая, стеариновая (насыщенные), олеиновая (ненасыщенная). Растительные жиры богаты ненасыщенными кислотами, поэтому они легкоплавкие, при комнатной температуре — жидкие. Животные жиры содержат в основном насыщенные кислоты, поэтому они более тугоплавкие, при комнатной температуре — твердые. Все жиры нерастворимы в воде, но хорошо растворяются в неполярных растворителях; плохо проводят тепло. К жирам относятся фосфолипиды (это основной компонент мембран клеток) — в их состав входит остаток фосфорной кислоты. К липоидам относятся стероиды, воска и др.

Функции липидов:

  1. структурная
  2. энергетическая — 1 г при полном распаде дает 38,9 кДж.
  3. Запас питательных веществ (жировая ткань)
  4. Терморегуляция (подкожный жир)
  5. Поставщики эндогенной воды — при окислении 100 г жира выделяется 107 мл воды (принцип верблюда)
  6. Защита внутренних органов от повреждения
  7. Гормоны (эстрогены, андрогены, стероидные гормоны)
  8. Простагландины — регуляторные вещества, поддерживают тонус сосудов и гладких мышц, участвуют в иммунных реакциях.

АТФ (аденозинтрифосфорная кислота). Энергия, освобождающаяся при распаде органических веществ, используется для работы в клетках не сразу, а сначала запасается в форме высокоэнергетического соединения — АТФ. АТФ состоит из трех остатков фосфорной кислоты, рибозы (моносахарид) и аденина (остаток азотистого основания). При отщеплении одного остатка фосфорной кислоты образуется АДФ, а если отщепляется два остатка — то АМФ. Реакция отщепления каждого остатка сопровождается освобождением 419 кДж/моль. Такая фосфорно-кислородная связь в АТФ называется макроэргической. АТФ имеет две макроэргические связи. АТФ образуется в митохондриях из АМФ, которая присоединяет сначала один, затем второй остаток фосфорной кислоты с поглощением 419 кДж/моль энергии (или из АДФ с присоединением одного остатка фосфорной кислоты).

Примеры процессов, требующих больших затрат энергии: биосинтез белка.


Нуклеиновые кислоты — это высокомолекулярные органические соединения, обеспечивающие хранение и передачу наследственной информации. Впервые описаны в 19-ом веке (1869 г.) швейцарцем Фридрихом Мишером. Существует две разновидности нуклеиновых кислот.

ДНК (дезоксирибонуклеиновая кислота)

Содержание в клетке строго постоянно. В основном находится в ядре (где образует хромосомы, состоящие из ДНК и двух видов белков). ДНК — это нерегулярный биополимер, мономером которого является нуклеотид, состоящий из азотистого основания, остатка фосфорной кислоты и моносахарида дезоксирибозы. В ДНК существует 4 разновидности нуклеотидов: А (аденин), Т (тимин), Г (гуанин) и Ц (цитозин). А и Г относятся к пуриновым основаниям, Ц и Т — к пиримидиновым. При этом в ДНК число пуриновых оснований равно числу пиримидиновых, а также А=Т и Ц=Г (правило Чаргаффа).

В 1953 г. Дж. Уотсон и Ф. Крик открыли, что молекула ДНК представляет собой двойную спираль. Каждая спираль состоит из полинуклеотидной цепи; цепи закручены одна вокруг другой и вместе вокруг общей оси, каждый виток спирали содержит 10 пара нуклеотидов. Цепи удерживаются вместе водородными связями, возникающими между основаниями (между А и Т — две, между Ц и Г — три связи). Полинуклеотидные цепи комплементарны друг другу: напротив аденина в одной цепи всегда находится тимин другой и наоборот (А-Т и Т-А); напротив цитозина — гуанин (Ц-Г и Г-Ц). Этот принцип строения ДНК называется принципом дополнения или комплементарности.

Каждая цепь ДНК имеет определенную ориентацию. Две цепи в молекуле ДНК расположены в противоположном направлении, т.е. антипараллельно.

Основная функция ДНК — хранение и передача наследственной информации.

РНК (рибонуклеиновая кислота)

Содержание в клетке сильно колеблется. Содержится в ядре и цитоплазме. Также является нерегулярным полимером, состоящим из нуклеотидов. Строение нуклеотида — как у ДНК, за двумя исключениями: вместо дезоксирибозы в состав РНК входит рибоза, а вместо тимина — урацил. РНК состоит из одной цепочки. Выделяют три вида РНК:

  1. и-РНК (информационная РНК) — содержится в ядре и цитоплазме. Ее функция — перенос информации о структуре белка от ДНК к месту синтеза белка.
  2. т-РНК (транспортная РНК) — в основном в цитоплазме клетки. Функция: перенос молекул аминокислот к месту синтеза белка. Это самая маленькая РНК.
  3. р-РНК (рибосомная РНК) — участвует в образовании рибосом. Это самая крупная РНК.

Строение клетки.

Основными компонентами клетки являются: наружная клеточная мембрана, цитоплазма и ядро.

Мембрана. В состав биологической мембраны (плазмалеммы) входят липиды, составляющие основу мембраны и высокомолекулярные белки. Молекулы липидов полярные и состоят из несущих заряд полярных гидрофильных головок и неполярных гидрофобных хвостов (жирные кислоты). В основном в мембране содержатся фосфолипиды (они имеют в своем составе остаток фосфорной кислоты). Белки мембраны могут быть поверхностными, интегральными (пронизывают мембрану насквозь) и полуинтегральными (погружены в мембрану).

Совре­менная модель биологической мембраны получила название «универсальная жидкостно-мозаичная модель», согласно которой глобулярные белки погружены в двойной липидный слой, при этом одни белки пронизывают его насквозь, другие — частично. Считается, что интегральные белки амфифильны, их неполярные участки погружены в двойной липидный слой, а полярные выступают наружу, образуя гидрофильную поверхность.

Субмембранная система клетки (подмембранный комплекс). Представляет собой специализированную периферическую часть цитоплазмы и занимает пограничное положение между рабочим метаболическим аппаратом клетки и плазматической мембраной. В субмембранной системе поверхностного аппарата можно выделить две части: периферическую гиалоплазму, где сосредоточены ферментативные системы, связанные с процессами трансмембранного транспорта и рецепции, и структурно оформленную опорно-сократимую систему. Опорно-сократимая система состоит из микрофибрилл, микротрубочек и ске­летных фибриллярных структур.

Надмембранные структуры клеток эукариот можно разделить на две большие категории.

  1. Собственно надмембранный комплекс, или гликокаликс толщиной 10-20 нм. В его состав входят периферические белки мембраны, углеводные части гликолипидов и гликопротеинов. Гликокаликс играет важную роль в рецепторной функции, обеспечивает «индивидуализацию» клетки — в его составе сосредоточены рецепторы тканевой совместимости.
  2. Производные надмембранных структур. К ним относятся специфические химические соединения, не производящиеся самой клеткой. Наиболее изучены они на микроворсинках клеток кишечного эпителия млекопитающих. Здесь ими являются гидролитические ферменты, адсорбирующиеся из полости кишки. Их переход из взвешенного в фиксированное состояние создает базу для качественно иного типа пищеварения, так называемого пристеночного пищеварения. Последнее по своей сути занимает промежуточное положение между полостным и внутриклеточным.

Функции биологической мембраны:

  1. барьерная;
  2. рецепторная;
  3. взаимодействие клеток;
  4. поддержание формы клетки;
  5. ферментативная активность;
  6. транспорт веществ в клетку и из нее.

Мембранный транспорт:

  1. Для микромолекул. Выделяют активный и пассивный транспорт.

    К пассивному относятся осмос, диффузия, фильтрация. Диффузия — транспорт вещества в сторону меньшей концентрации. Осмос — движение воды в сторону раствора с большей концентрацией. С помощью пассивного транспорта двигаются вода, жирорастворимые вещества.

    К активному транспорту относятся: перенос веществ с участием ферментов-переносчиков и ионные насосы. Фермент-переносчик связывает переносимое вещество и «протаскивает» его внутрь клетки. Механизм ионного насоса рассматривается на примере работы калиево-натриевого насоса: во время его работы происходит перенос трех Nа+ из клетки на каждые два К+ в клетку. Насос действует по принципу открывающихся и закрывающихся каналов и по своей химической природе является белком-ферментом (расщепляет АТФ). Белок связывается с ионами натрия, изменяет свою форму, и внутри него образуется канал для прохождения ионов натрия. После прохождения этих ионов белок снова меняет форму и открывается канал, через который идут ионы калия. Все процессы энергозависимы.

    Принципиальное отличие активного транспорта от пассивного заключается в том, что он идет с затратами энергии, а пассивный — без них.

  2. Для макромолекул. Происходит с помощью активного захвата мембраной клетки веществ: фагоцитоза и пиноцитоза. Фагоцитоз — захват и поглощение клеткой крупных частиц (например, уничтожение патогенных микроорганизмов макрофагами организма человека). Впервые описан И.И. Мечниковым. Пиноцитоз — процесс захвата и поглощения клеткой капель жидкости с растворенными в ней веществами. Оба процесса происходят по сходному принципу: на поверхности клетки вещество окружается мембраной в виде вакуоли, которая перемещается внутрь. Оба процесса связаны с затратой энергии.

Цитоплазма. В цитоплазме различают основное вещество (гиалоплазму, матрикс), органеллы (органоиды) и включения.

Основное вещество заполняет пространство между плазмалеммой, ядерной оболочкой и другими внутриклеточными структурами. Она образует внутреннюю среду клетки, которая объединяет все внутриклеточные структуры и обеспечивает их взаимодействие друг с другом. Цитоплазма ведет себя как коллоид, способный переходить из состояния ге­ля в золь и обратно. Золь — это состояние вещества, характеризующееся низкой вязкостью и лишенное сшивок между микрофиламентами. Гель — это состояние вещества, характеризующееся высокой вязкостью и наличием связей между микрофиламентами. Наружный слой цитоплазмы, или эктоплазма, отличается более высокой плотностью и лишена гранул. Примеры процессов, осуществляющихся в матриксе: гликолиз, распад веществ до мономеров.

Органеллы — структуры цитоплазмы, выполняющие в клетке специфические функции.

Органеллы бывают:

  1. мембранные (одно- и двумембранные (митохондрии и пластиды)) и немембранные.
  2. органеллы общего значения и специальные. К первым относятся: ЭПС, аппарат Гольджи, митохондрии, рибосомы и полисомы, лизосомы, клеточный центр, микротельца, микротрубочки, микрофиламенты. Органеллы специаль­ного назначения (присутствуют в клетках, выполняющих специализированные функции): реснички и жгутики (движение клетки), микроворсинки, синаптические пузырьки, миофибриллы.

органоидстроениефункции
мембранные
ЭПС система соединенных между собой канальцев и полостей различной формы и величины. Образует непрерывную структуру с ядерной мембраной. Бывает двух видов: гладкая и гранулярная или шероховатая (на ней находятся рибосомы) синтез и внутриклеточный транспорт белков (шероховатая); синтез и распад липидов и углеводов (гладкая)
Аппарат Гольджи (пластинчатый комплекс) состоит из полостей, уложенных в стопку. На концах полостей могут образовываться пузырьки, отделяющиеся от них сортировка и упаковка макромолекул, транспорт веществ, участие в образование лизосом
Лизосомы это пузырьки диаметром 5 мкм, содержащие гидролитические ферменты расщепление органических веществ, старых частей клетки, целых клеток и даже отдельных органов (хвост головастика)
Вакуоль только у растений (до 90% объема клетки). Крупная полость в центре клетки, заполненная клеточным соком резервуар воды и растворенных в ней веществ, окраска, внутреннее (тургорное) давление клетки
Митохондрии палочковидные, нитевидные или шаровидные органеллы с двойной мембраной — наружной гладкой и внутренней с многочисленными выростами (кристами). Между мембранами находится пространство. На внутренней мембране находятся ферменты. Внутри находится вещество, называемое матриксом, содержащее ДНК, РНК и митохондриальные рибосомы участвуют в энергетическом обмене клетки
Пластиды только у растений. Лейкопласты (бесцветные) обычны в органах растений, скрытых от солнечного света. Хлоропласты (зеленые) имеют две мембраны, внутри — матрикс. Хорошо развита внутренняя мембрана, имеющая складки, между которыми находятся пузырьки — тилакоиды. Часть тилакоидов собрано наподобие стопки в группы, называемые гранами. Хромопласты (желто-оранжевые) встречаются в окрашенных органах — лепестках, плодах, корнеплодах и осенних листьях. Внутренняя мембрана обычно отсутствует фотосинтез, окраска, запас веществ
немембранные
клеточный центр есть у животных и низших растений; у высших растений отсутствует. Состоит из 2 центриолей и микротрубочек организация цитоскелета клетки; участие в делении клетки (образует веретено деления)
рибосомы и полисомы это сферические структуры. Состоят из 2 субъединиц — большой и малой. Содержат р-РНК. Находятся на ЭПС или свободно в цитоплазме. Полисома — это структура, состоящая из одной и-РНК и нескольких рибосом, расположенных на ней. синтез белка
опорно-двигательная система образует цитоскелет клетки. В него входят микротельца, микротрубочки, микрофиламенты. Микрофиламенты состоят из глобулярных молекул белка актина. Микротрубочки — полые белковые цилиндры, находящиеся в ресничке или жгутике. определяют форму клеток, участвуют в движении клетки, опорная функция

Клеточные включения — это непостоянные образования, то возникающие, то исчезающие в процессе жизнедеятельности клетки, т.е. это продукты клеточного метаболизма. Чаще всего находятся в цитоплазме, реже в органеллах или в ядре. Включения представлены главным образом гранулами (полисахариды: гликоген у животных, крахмал у растений; реже белки — в цитоплазме яйцеклеток), каплями (липиды) и кристаллами (оксалат кальция). К клеточным включениям относятся также некоторые пигменты — желтый и коричневый липофусцин (накапливается в процессе старения клеток), ретинин (входит в состав зрительного пигмента), гемоглобин, меланин и т.п.


Ядро. Основная функция ядра — хранение наследственной информации. Компонентами ядра являются ядерная оболочка, нуклеоплазма (ядерный сок), ядрышко (одно или два), глыбки хроматина (хромосомы). Ядерная оболочка эукариотической клетки обособляет наследственный материал (хромосомы) от цитоплаз­мы, в которой осуществляются многообразные метаболические реакции. Ядерная оболочка состоит из 2-х биологических мембран. Через определенные интервалы обе мембраны сливаются друг с другом, образуя поры — это отверстия в ядерной мембране. Через них происходит обмен веществ с цитоплазмой.

Основу нуклеоплазмы составляют белки, в том числе и фибриллярные. Она содержит ферменты, необходимые для синтеза нуклеиновых кислот и рибосом. Также в ядерном соке содержится РНК.

Ядрышки — это место сборки рибосом, это непостоянные структуры ядра. Они исчезают в начале деления клетки и вновь появляются к его концу. В ядрышке различают аморфную часть и ядрышковую нить. Обе составляющие построены из филаментов и гранул, состоящие из белков и РНК.

Хромосомы. Хромосомы состоят из ДНК, которая окружена белками двух типов: гистоновыми (основными) и негистоновыми (кислыми). Хромосомы могут находиться в двух структурно-функциональных состояниях: спирализованном и деспирализованном. Частично или полностью деконденсированное (деспирализованное) состояние называется рабочим, т.к. в этом состоянии происходят процессы транскрипции и редупликации. Неактивное состояние — в состоянии метаболического покоя при максимальной их конденсации, когда они выполняют функцию распределения и переноса генетического материала в дочерние клетки.

В интерфазе хромосомы представлены клубком тонких нитей, который различим только под электронном микроскопом. Во время деления хромосомы укорачиваются и утолщаются, они спирализованы и хорошо видны под микроскопом (лучше всего в стадии метафазы). В это время хромосомы состоят из двух хроматид, связанных первичной перетяжкой, которая делит каждую хроматиду на два участка — плеча.

По месту расположения первичной перетяжки выделяют несколько видов хромосом:

  1. метацентрические или равноплечие (оба плеча хромосомы имеют одинаковую длину);
  2. субметацентрические или неравноплечие (плечи хромосомы несколько отличаются по размеру);
  3. акроцентрические (одно плечо очень короткое).

Метаболизм клетки.

Это одно из основных свойств живого. Метаболизм возможен благодаря тому, что живые организмы являются открытыми системами, т.е. между организмом и окружающей средой постоянно происходит обмен веществ и энергией. Метаболизм протекает во всех органах, тканях и клетках, обеспечивая самообновление морфологических структур и химического состава цитоплазмы.

Метаболизм складывается из двух процессов: ассимиляции (или пластиче­ского обмена) и диссимиляции (или энергетического обмена). Ассимиляция (пластический обмен) — совокупность всех процессов биосинтеза, проходящих в живых организмах. Диссимиляция (энергетический обмен) — совокупность всех процессов распада сложных веществ на простые с выделением энергии, проходящих в живых организмах.

По способу ассимиляции и в зависимости от вида используемой энергии и исходных веществ, организмы делятся на автотрофов (фотосинтетики и хемосинтетики) и гетеротрофов. Автотрофы — это организмы, самостоятельно синтезирующие органические вещества, используя для этого энергию Солнца (фотоавтотрофы) или энергию окисления неорганических веществ (хемоавтотрофы). К автотрофам относят растения, бактерии, сине-зеленые. Гетеротрофы — это организмы, получающие готовые органические вещества вместе с пищей. К ним относятся животные, грибы, бактерии.

Роль автотрофов в круговороте веществ огромна: 1) они трансформируют энергию Солнца в энергию химических связей органических веществ, которая используется всеми остальными живыми существами нашей планеты; 2) насыщают атмосферу кислородом (фотоавтотрофы), который необходим большинству гетеротрофов для получения энергии путем окисления органических веществ. Гетеротрофы также играют важную роль в круговороте веществ: они выделяют неорганические вещества (углекислый газ и вода), используемые автотрофами.


Диссимиляция. Все гетеротрофные организмы получают энергию в результате окислительно-восстановительных реакций, т.е. таких, в которых электроны переносятся от доноров электронов-восстановителей к акцепторам электронов — окислителям.

По способу диссимиляции организмы делятся на анаэробные и аэробные. К аэробным организмам относятся почти все животные (за исключением некоторых червей-паразитов); к облигатным анаэробам — бактерия Clostridium botulinum (выделяет токсин, вызывающий смертельную болезнь — ботулизм); к факультативным анаэробам — дрожжи.


Энергетический обмен у аэробных организмов складывается из трех этапов:

  1. подготовительного, который проходит в желудочно-кишечном тракте или в клетке под действием ферментов лизосом. Во время этого этапа происходит распад всех биополимеров до мономеров: белки распадаются сначала до пептидов, затем - до аминокислот; жиры — до глицерина и жирных кислот; углеводы — до моносахаридов (до глюкозы и ее изомеров).
  2. бескислородного (или анаэробного), который проходит в матриксе цитоплазмы. Этот этап называют гликолизом. Под действием ферментов глюкоза расщепляется до двух молекул ПВК. При этом выделяется 4 атома Н, которые акцептируются веществом под названием НАД+ (никотинамидадениндинуклеотид). При этом НАД+ восстанавливается в НАД*Н (эта запасенная энергия в дальнейшем будет использоваться для синтеза АТФ). Также за счет распада глюкозы образуется 4 молекулы АТФ из АДФ. При этом 2 молекулы АТФ расходуется во время химических реакций гликолиза, поэтому суммарный выход АТФ после гликолиза составляет 2 молекулы АТФ.
  3. кислородного, который проходит в митохондриях. Две молекулы ПВК поступают на ферментативный кольцевой «конвейер», который называют циклом Кребса или циклом трикарбоновых кислот. Все ферменты этого цикла находятся в митохондриях.

Попадая в митохондрии, ПВК окисляется и превращается в богатое энергией вещество — ацетил коэнзим А (это производное уксусной кислоты). Далее это вещество реагирует с ЩУК, образуя лимонную кислоту (цитрат), коэнзим А, протоны (акцептируются НАД+, который превращается в НАД*Н) и углекислый газ. В дальнейшем лимонная кислота окисляется и вновь превращается в ЩУК, которая реагирует с новой молекулой ацетил коэнзима А, и весь цикл повторяется заново. Во время этого процесса накапливается энергия в виде АТФ и НАД*Н.

Следующая стадия — превращение энергии, запасенной в НАД*Н, в энергию связей АТФ. В ходе этого процесса электроны от НАД*Н перемещаются по многоступенчатой цепи переноса электронов к конечному акцептору — молекулярному кислороду. При переходе электронов со ступени на ступень выделяется энергии, которая используется для превращения АДФ в АТФ. Поскольку в этом процессе окисление сопряжено с фосфорилированием, то весь процесс называют окислительным фосфорилированием (этот процесс был открыт русским ученым В.А. Энгельгардтом; он происходит на внутренней мембране митохондрий). В конце этого процесса образуется вода. Во время кислородного этапа образуется 36 молекул АТФ.

Таким образом, конечными продуктами распада глюкозы являются углекислый газ и вода. При полном распаде одной молекулы глюкозы выделяется 38 молекул АТФ. При нехватке кислорода в клетке происходит окисление глюкозы с образованием молочной кислоты (например, при интенсивной работе мышц — бег и т.п.). В результате этого образуется только две молекулы АТФ.

Необходимо отметить, что источником энергии могут служить не только молекулы глюкозы. Жирные кислоты также окисляются в клетке до ацетил коэнзима А, поступающий в цикл Кребса; при этом также происходит восстановление НАД+ в НАД*Н, который участвует в окислительном фосфорилировании. При острой нехватке в клетке глюкозы и жирных кислот окислению подвергаются многие аминокислоты. Их них также образуется ацетил коэнзим А или органические кислоты, участвующие в цикле Кребса.

При анаэробном способе диссимиляции отсутствует кислородный этап, и энергетический обмен у анаэробов получил название «брожение». Конечные продукты диссимиляции при брожении — молочная кислота (молочно-кислые бактерии) или этиловый спирт (дрожжи). При таком типе обмена из одной молекулы глюкозы выделяется 2 молекулы АТФ.

Т.о., аэробное дыхание почти в 20 раз энергетически более выгодно, чем анаэробное.


Фотосинтез. Жизнь на Земле полностью зависит от фотосинтеза растений, поставляющих органическое вещество и О2 всем организмам. При фотосинтезе происходит преобразование световой энергия в энергию химических связей.

Фотосинтез — это образование органических веществ из неорганических при участии солнечной энергии. Этот процесс был открыт К.А. Тимирязевым в 19-ом веке. Суммарное уравнение фотосинтеза: 6СО2 + 6Н2О = С6Н12О6 + 6О2.

Фотосинтез осуществляется в растениях, имеющих пластиды — хлоропласты. Хлоропласты имеют две мембраны, внутри — матрикс. У них хорошо развита внутренняя мембрана, имеющая складки, между которыми находятся пузырьки — тилакоиды. Часть тилакоидов собрано наподобие стопки в группы, называемые гранами. В гранах находятся все фотосинтетические структуры; в строме, окружающей тилакоиды, находятся ферменты, восстанавливающие углекислый газ до глюкозы. Основной пигмент хлоропластов — хлорофилл, по строению напоминающий гем человека. В состав хлорофилла входит атом магния. Хлорофилл поглощает синие и красные лучи спектра и отражает зеленые. Также могут присутствовать другие пигменты: желтые каротиноиды и красные или синие фикобилины. Каротиноиды маскируются хлорофиллом; они поглощают свет, не доступный для других пигментов и передают его хлорофиллу.

В составе хлоропластов есть две фотосистемы разного строения и состава: фотосистема I и II. Фотосистема I имеет реакционный центр, представляющий собой молекулы хлорофилла в комплексе с особым белком. Этот комплекс поглощает свет с длиной волны 700 нм (поэтому его называют фотохимическим центром Р700). В фотосистеме II также имеется реакционный центр — фотохимический центр Р680.

Фотосинтез имеет две стадии: световую и темновую.

Световая стадия. Энергия света поглощается хлорофиллом и переводит его в возбужденное состояние. Электрон в составе фотохимического центра Р700 поглощает свет, перемещается на более высокий энергетический уровень и переносится на НАДФ+ (никотинамидадениндинуклеотидфосфат), восстанавливая его в НАДФ*Н. В молекуле хлорофилла фотосистемы I остаются «дыры» — незаполненные места для электронов. Эти «дыры» заполняются электронами, пришедшими из фотосистемы II. Под действием света электрон хлорофилла в фотохимическом центре Р680 также приходит в возбужденное состояние и начинает перемещаться по цепи переносчиков электронов. В конечном итоге этот электрон приходит в фотосистему I, заполняя в ней свободные места. При этом электрон теряет часть энергии, которая расходуется на образование АТФ из АДФ.

Также в хлоропластах под действием солнечного света происходит расщепление воды — фотолиз, при котором образуются электроны (поступают в фотосистему II и занимают место электронов, ушедших в цепь переносчиков), протоны (акцептируются НАДФ+) и кислород (как побочный продукт):

2О = 4Н+ + 4е + О2

Таким образом, в результате световой стадии происходит накопление энергии в виде АТФ и НАДФ*Н, а также образование кислорода.

Темновая стадия. Не требует наличия света. Молекула углекислого газа при помощи ферментов реагирует с 1,5 рибулезодифосфатом (это производное рибозы). Образуется промежуточное соединение С6, которое разлагается водой на две молекулы фосфоглицериновой кислоты (С3). Из этих веществ путем сложных реакций синтезируется фруктоза, которая далее превращается в глюкозу. Для этих реакций требуется 18 молекул АТФ и 12 молекул НАДФ*Н. Из глюкозы в растениях образуется крахмал и целлюлоза. Фиксация СО2 и превращение его в углеводы носит циклический характер и называется циклом Кальвина.

Значение фотосинтеза для сельского хозяйства велико — именно от него зависит урожай сельскохозяйственных культур. При фотосинтезе растение использует лишь 1-2% солнечной энергии, поэтому имеется огромная перспектива повышения урожайности благодаря селекции сортов с более высокой эффективностью фотосинтеза. Для повышения эффективности фотосинтеза применяют: искусственное освещение (дополнительная подсветка лампами дневного света в пасмурные дни или весной и осенью) в теплицах; отсутствие затенения культурных растений, соблюдение необходимых расстояний между растениями и т.п.


Хемосинтез. Это процесс образования органических веществ из неорганических при использовании энергии, полученной при окислении неорганических веществ. Эта энергия запасается в виде АТФ. Хемосинтез открыт русским микробиологом С.Н. Виноградским в 19-ом веке (1889-1890 гг.). Этот процесс возможен у бактерий: серобактерии (окисляют сероводород до серы и даже до серной кислоты); нитрифицирующие бактерии (окисляют аммиак до азотной кислоты).


Репликация ДНК (удвоение ДНК). В результате этого процесса образуется две двойные спирали ДНК, которые ничем не отличаются от исходной (материнской). Сначала с помощью особого фермента (геликаза) двойная спираль ДНК расплетается в точках начала репликации. Затем при участии фермента ДНК-полимеразы происходит синтез дочерних цепей ДНК. На одной из цепей процесс идет непрерывно — эта цепь называется лидирующей. Вторая цепь ДНК синтезируется короткими фрагментами (фрагментами Оказаки), которые «сшиваются» вместе с помощью специальных ферментов. Эта цепь называется отстающей или запаздывающей.

Участок между двумя точками, в которых начинается синтез дочерних цепей, называется репликоном. У эукариот в ДНК имеется много репликонов, у прокариот только один репликон. В каждом репликоне можно видеть репликативную вилку — ту часть молекулы ДНК, которая уже расплелась.

Репликация основана на ряде принципов:

  1. комплементарности (А-Т, Ц-Г) антипараллельности. Каждая цепь ДНК имеет определенную ориентацию: один конец несет ОН-группу, присоединенную к 3'-углероду в сахаре дезоксирибозе, на другом конце цепи находится остаток фосфорной кислоты в 5'-положении сахара. Две цепи ДНК ориентированы в противоположных направлениях, т.е. антипараллельно. Фермент ДНК-полимераза может передвигаться вдоль матричных цепей лишь в одном направлении: от их 3'-концов к 5'-концам. Поэтому в процессе репликации одновременный синтез новых цепей идет антипараллельно.
  2. полуконсервативности. Образуются две дочерние спирали, каждая из которых сохраняет (консервирует) в неизменном виде одну из половин материнской ДНК
  3. прерывистости. Чтобы новые нити ДНК могли образоваться, материнские цепи должны быть полностью раскручены и вытянуты, что невозможно; поэтому репликация начинается одновременно в нескольких местах.

Биосинтез белка. Примером пластического обмена у гетеротрофных организмов является биосинтез белка. Все основные процессы в организме связаны с белками, причем в каждой клетке постоянно происходит синтез белков, свойственных данной клетке и необходимых в данный период жизни клетки. Информация о молекуле белка зашифрована в молекуле ДНК с помощью триплетов или кодонов.

Генетический код — это система записи информации о последовательности расположения аминокислот в белках с помощью последовательности расположения нуклеотидов в и-РНК.

Свойства кода:

  1. Триплетность — каждая аминокислота зашифрована последовательностью из трех нуклеотидов. Эта последовательность называется триплетом или кодоном.
  2. Вырожденность или избыточность — каждая аминокислота шифруется более чем одним кодоном (от 2 до 6). Исключение составляют метионин и триптофан — каждая из них кодируются одним триплетом.
  3. Однозначность — каждый кодон шифрует только одну аминокислоту.
  4. Между генами имеются «знаки препинания» — это три специальных триплета (УАА, УАГ, УГА), каждый из которых не кодирует аминокислоты. Эти триплеты находятся в конце каждого гена. Внутри гена «знаков препинания» нет.
  5. Универсальность — гентический код един для всех живых существ планеты Земля.

В биосинтезе белка различают три этапа — транскрипцию, посттранскрипционные процессы и трансляцию.

Транскрипция — это процесс синтеза и-РНК, осуществляемый ферментом РНК-полимера-зой. Происходит в ядре. Транскрипция осуществляется по правилу комплементарности. По длине и-РНК соответствует одному или нескольким генам. В процессе транскрипции можно выделить 4 стадии:

  1. связывание РНК-полимеразы с промотором (это участок для прикрепления фермента).
  2. инициация — начало синтеза.
  3. элонгация — рост цепи РНК; последовательное присоединение нуклеотидов друг к другу в том порядке, в котором стоят комплементарные нуклеотиды нити ДНК. Ее скорость — до 50 нуклеотидов в секунду.
  4. терминация — завершение синтеза пре-и-РНК.

Посттранскрипционные процессы. После образования пре-и-РНК начинается созревание или процессинг и-РНК. При этом из молекулы РНК удаляются интронные участки с последующим соединением экзонных участков (этот процесс называют сплайсингом). После этого зрелая и-РНК выходит из ядра и направляется к месту синтеза белка (к рибосомам).

Трансляция — это синтез полипептидных цепей белков, выполняемый по матрице и-РНК в рибосомах.

Аминокислоты, необходимые для синтеза белка, доставляются в рибосомы с помощью т-РНК. Молекула транспортной РНК имеет форму листа клевера, на вершине которого имеется последовательность из трех нуклеотидов, комплементарных нуклеотидам кодона в и-РНК. Эта последовательность называется антикодоном. Фермент (кодаза) опознает т-РНК и присоединяет к ней соответствующую аминокислоту (тратится энергия одной молекулы АТФ).

Биосинтез белка начинается с того (у бактерий), что кодон АУГ, расположенный на первом месте в копии с каждого гена, занимает место на рибосоме в донорном участке и к нему присоединяется т-РНК, несущая формилметионин (это измененная форма аминокислоты метионина). После завершения синтеза белка формилметионин отщепляется от полипептидной цепочки.

На рибосоме имеются два участка для связывания двух молекул т-РНК: донорный и акцепторный. В акцепторный участок поступает т-РНК с аминокислотой и присоединяется к своему кодону и-РНК. Аминокислота этой т-РНК присоединяет к себе растущую цепь белка, между ними возникает пептидная связь. т-РНК, к которой присоединен растущий белок, перемещается вместе с кодоном и-РНК в донорный участок рибосомы. В освободившийся акцепторный участок приходит новая т-РНК с аминокислотой, и все повторяется заново. Когда на рибосоме оказывается один из знаков препинания, ни одна из т-РНК с аминокислотой не может занять акцепторный участок. Полипептидная цепь отрывается и покидает рибосому.

Клетки разных тканей организма продуцируют разные белки (амилаза — клетки слюнных желез; инсулин — клетки поджелудочной железы и т.п.). При этом все клетки организма образовались из одной оплодотворенной яйцеклетки путем многократного деления с помощью митоза, т.е. имеют одинаковый генетический набор. Эти отличия связаны с тем, что в разных клетках транскрибируются разные участки ДНК, т.е. образуются разные и-РНК, по которым и синтезируются белки. Специализация клетки определяется не всеми генами, а только теми, с которых информация была прочтена и реализована в белки. Т.о., в каждой клетке реализуется только часть наследственной информации, а не вся информация целиком.


Регуляции генной активности при синтезе отдельных белков на примере бактерий (схема Ф.Жакоба и Ж Моно).

Известно, что пока в питательной среде, где обитают бактерии, не добавят сахар, в клетке бактерий нет ферментов, необходимых для его расщепления. Но через несколько секунд после добавления сахара в клетке синтезируются все необходимые ферменты.

Ферменты, участвующие в одной цепи превращения субстрата в конечный продукт, закодированы в расположенных друг за другом структурных генах одного оперона. Оперон — это группа генов, несущих информацию о структуре белков, необходимых для выполнения одной функции. Между структурными генами и промотором (место посадки РНК-полимеразы) есть участок, называемый оператором. Он так называется, потому что именно с него начинается синтез и-РНК. С оператором взаимодействует специальный белок — репрессор (подавитель). Пока репрессор находится на операторе, синтез и-РНК не может начаться.

Когда в клетку попадает субстрат, для расщепления которого нужны белки, закодированные в структурных генах данного оперона, одна из молекул субстрата взаимодействует с репрессором. Репрессор теряет способность взаимодействовать с оператором и отходит от него; начинается синтез и-РНК и образование соответствующих белков на рибосоме. Как только последняя молекула субстрата будет преобразована в конечное вещество, освобожденный репрессор возвратится на оператор и заблокирует синтез и-РНК.


Использованная литература:

  1. Ю. Ченцов «Введение в клеточную биологию» (2006)
  2. В.Н. Ярыгин (редактор) «Биология» (в двух томах, 2006)
  3. О.В. Александровская и др. «Цитология, гистология и эмбриология» (1987)
  4. А.О. Рувимский (редактор) «Общая биология» (учебник для 10-11 классов с углубленным изучением биологии) — на мой взгляд, это один из лучших учебников по общей биологии для абитуриентов, хотя и не без недостатков.
Ваш репетитор

© Repetitors.info, 2012-2024

Выберите город